Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Daniel E. Lynch, ${ }^{\text {a }}$ * Ian McClenaghan ${ }^{\text {b }} \boldsymbol{+}$ and Mark E. Light ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Natural and Environmental Sciences, Coventry University, Coventry CV1 5FB, England, ${ }^{\mathbf{b}}$ Spa Contract Synthesis, School of Natural and Environmental Sciences, Coventry University, Coventry CV1 5FB, England, and ${ }^{\text {c }}$ Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England

+ E-mail: 106355.1670@compuserve.com.
Correspondence e-mail:
apx106@coventry.ac.uk


## Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
$R$ factor $=0.031$
$w R$ factor $=0.083$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

## Redetermination of 1,3-thiazolidine-2,4-dione

The structure of the title compound, $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}_{2} \mathrm{~S}$, comprises flat molecules that associate via a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction and a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ close contact to the second O atom. Furthermore, $10 \%$ of the molecules have S and $\mathrm{CH}_{2}$ interchanged, generating disorder.

## Comment

The structure of the title compound, (I), is known with the room-temperature structure being refined to $R=0.069$ (Form et al., 1975). Refinement on data collected at 150 K yielded $R=$ 0.066 but left C5 as non-positive-definite, with significant electron density close to this atom. Further refinement of the disorder revealed that $10 \%$ of the molecules have S and $\mathrm{CH}_{2}$ interchanged, with the $\mathrm{O}=\mathrm{C}-\mathrm{NH}-\mathrm{C}=\mathrm{O}$ sites being in common. The molecule was consequently split into two separate partial-occupancy fragments and refined in both configurations with bond distances (for the major fragment) allowed to vary while the displacement parameters and ring geometry were restrained to be equal in each portion.

(I)

## Experimental

The title compound, (I), was prepared by Spa Contract Synthesis.

## Crystal data

## $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}_{2} \mathrm{~S}$

$M_{r}=117.12$
Orthorhombic, Pbca
$a=7.2926$ (2) A
$b=9.3642(3) \AA$
$c=13.1208$ (5) A
$V=896.01$ (5) $\AA^{3}$
$Z=8$
$D_{x}=1.736 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

| Enraf-Nonius KappaCCD area- | 1018 independent reflections |
| :---: | :--- |
| $\quad$ detector diffractometer | 919 reflections with $I>2 \sigma(I)$ |
| $\varphi$ and $\omega$ scans | $R_{\text {int }}=0.057$ |
| Absorption correction: multi-scan | $\theta_{\max }=27.5^{\circ}$ |
| $\quad($ SORTAV; Blessing, 1995) | $h=-9 \rightarrow 9$ |
| $T_{\min }=0.759, T_{\max }=0.960$ | $k=-12 \rightarrow 12$ |
| 5895 measured reflections | $l=-16 \rightarrow 17$ |

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0403 P)^{2}\right.} \\
&+0.44 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.083$
$S=1.09$
1018 reflections
70 parameters
H -atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 21 A^{\mathrm{i}}$ | 0.88 | 1.97 | $2.8465(16)$ | 178 |
| $\mathrm{C} 5 A-\mathrm{H} 52 A \cdots \mathrm{O} 41 A^{\mathrm{ii}}$ | 0.99 | 2.50 | $3.453(3)$ | 161 |

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-\frac{1}{2}-x, y-\frac{1}{2}, z$.
All H atoms were included in the refinement at calculated positions as riding models, with $\mathrm{C}-\mathrm{H}$ set to $0.88(\mathrm{~N}-\mathrm{H})$ and $0.99 \AA$ $\left(\mathrm{CH}_{2}\right)$.

Data collection, cell refinement and data reduction: $D E N Z O$ (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton).


## Figure 1

The molecular configuration and atom numbering scheme for (I), showing $50 \%$ probability displacement ellipsoids.

## References

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Form, G. R., Raper, E. S. \& Downie, T. C. (1975). Acta Cryst. B31, 2181-2184.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

